Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
1.
BMC Genomics ; 25(1): 314, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532358

RESUMO

BACKGROUND: Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve. RESULTS: Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue. CONCLUSIONS: These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.


Assuntos
Caspases , Mytilus , Animais , Caspases/genética , Mytilus/genética , Caspase 2 , Caspase 3 , Concentração de Íons de Hidrogênio , Água do Mar
2.
Part Fibre Toxicol ; 21(1): 13, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454452

RESUMO

BACKGROUND: With rapid increase in the global use of various plastics, microplastics (MPs) and nanoplastics (NPs) pollution and their adverse health effects have attracted global attention. MPs have been detected out in human body and both MPs and NPs showed female reproductive toxicological effects in animal models. Miscarriage (abnormal early embryo loss), accounting for 15-25% pregnant women worldwide, greatly harms human reproduction. However, the adverse effects of NPs on miscarriage have never been explored. RESULTS: In this study, we identified that polystyrene (PS) plastics particles were present in women villous tissues. Their levels were higher in villous tissues of unexplained recurrent miscarriage (RM) patients vs. healthy control (HC) group. Furthermore, mouse assays further confirmed that exposure to polystyrene nanoplastics (PS-NPs, 50 nm in diameter, 50 or 100 mg/kg) indeed induced miscarriage. In mechanism, PS-NPs exposure (50, 100, 150, or 200 µg/mL) increased oxidative stress, decreased mitochondrial membrane potential, and increased apoptosis in human trophoblast cells by activating Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3 signaling through mitochondrial pathway. The alteration in this signaling was consistent in placental tissues of PS-NPs-exposed mouse model and in villous tissues of unexplained RM patients. Supplement with Bcl-2 could efficiently suppress apoptosis in PS-NPs-exposed trophoblast cells and reduce apoptosis and alleviate miscarriage in PS-NPs-exposed pregnant mouse model. CONCLUSIONS: Exposure to PS-NPs activated Bcl-2/Cleaved-caspase-2/Cleaved-caspase-3, leading to excessive apoptosis in human trophoblast cells and in mice placental tissues, further inducing miscarriage.


Assuntos
Aborto Espontâneo , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Poliestirenos/toxicidade , Caspase 3 , Microplásticos , Plásticos , Caspase 2 , Placenta , Apoptose , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-bcl-2 , Nanopartículas/toxicidade
3.
Cell Death Dis ; 15(3): 182, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429264

RESUMO

Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.


Assuntos
Caspase 2 , Ferroptose , Caspase 2/genética , Morte Celular/genética , Chaperonas Moleculares , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proteína Supressora de Tumor p53/genética , Ferroptose/genética
4.
Eur J Hum Genet ; 32(1): 52-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37880421

RESUMO

Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.


Assuntos
Lisencefalia , Transtornos do Neurodesenvolvimento , Humanos , Caspase 2/genética , Lisencefalia/diagnóstico por imagem , Lisencefalia/genética , Alelos , Transtornos do Neurodesenvolvimento/genética , Códon sem Sentido , Fenótipo , Cisteína Endopeptidases/genética
5.
Trends Mol Med ; 29(12): 996-1013, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716905

RESUMO

The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.


Assuntos
Proteína Adaptadora de Sinalização CRADD , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Humanos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Estudos Prospectivos , Apoptose/fisiologia
6.
J Chromatogr A ; 1706: 464246, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37541058

RESUMO

Immobilized metal affinity chromatography (IMAC) is a powerful technique for capture and purification of relevant biopharmaceuticals in complex biological matrices. However, protein recovery can be drastically compromised due to surface induced spreading and unfolding of the analyte, leading to fouling of the stationary phase. Here, we report on the kinetics of irreversible adsorption of a protease on an IMAC resin in a time span ranging from minutes to several hours. This trend correlated with the thermal data measured by nano differential scanning calorimetry, and showed a time-dependent change in protein unfolding temperature. Our results highlight that 'soft' proteins show a strong time dependent increase in irreversible adsorption. Furthermore, commonly used co-solvents for preservation of the native protein conformation are tested for their ability to reduce fouling. Thermal data suggests that the amino acid l-arginine is beneficial in preventing unfolding, which was confirmed in batch adsorption experiments. The choice of counter-ions has to be considered when using this amino acid. These results show that l-arginine sulfate decelerates the irreversible adsorption kinetics of proteins on the IMAC stationary phase to a greater extent than l-arginine chloride.


Assuntos
Cromatografia de Afinidade , Arginina/química , Sulfatos/química , Ligação Proteica , Cromatografia de Afinidade/métodos , Caspase 2/química , Proteínas de Fluorescência Verde/química , Fator de Necrose Tumoral alfa/química , Níquel/química
7.
Eur J Med Chem ; 259: 115632, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37453329

RESUMO

Recent Alzheimer's research has shown increasing interest in the caspase-2 (Casp2) enzyme. However, the available Casp2 inhibitors, which have been pentapeptides or peptidomimetics, face challenges for use as CNS drugs. In this study, we successfully screened a 1920-compound chloroacetamide-based, electrophilic fragment library from Enamine. Our two-point dose screen identified 64 Casp2 hits, which were further evaluated in a ten-point dose-response study to assess selectivity over Casp3. We discovered compounds with inhibition values in the single-digit micromolar and sub-micromolar range, as well as up to 32-fold selectivity for Casp2 over Casp3. Target engagement analysis confirmed the covalent-irreversible binding of the selected fragments to Cys320 at the active site of Casp2. Overall, our findings lay a strong foundation for the future development of small-molecule Casp2 inhibitors.


Assuntos
Caspase 2 , Inibidores de Caspase , Caspase 2/metabolismo , Caspase 3/metabolismo , Domínio Catalítico , Inibidores de Caspase/química
8.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373014

RESUMO

ß-lapachone (ß-Lap), a topoisomerase inhibitor, is a naturally occurring ortho-naphthoquinone phytochemical and is involved in drug resistance mechanisms. Oxaliplatin (OxPt) is a commonly used chemotherapeutic drug for metastatic colorectal cancer, and OxPt-induced drug resistance remains to be solved to increase chances of successful therapy. To reveal the novel role of ß-Lap associated with OxPt resistance, 5 µM OxPt-resistant HCT116 cells (HCT116-OxPt-R) were generated and characterized via hematoxylin staining, a CCK-8 assay and Western blot analysis. HCT116-OxPt-R cells were shown to have OxPt-specific resistance, increased aggresomes, upregulated p53 and downregulated caspase-9 and XIAP. Through signaling explorer antibody array, nucleophosmin (NPM), CD37, Nkx-2.5, SOD1, H2B, calreticulin, p38 MAPK, caspase-2, cadherin-9, MMP23B, ACOT2, Lys-acetylated proteins, COL3A1, TrkA, MPS-1, CD44, ITGA5, claudin-3, parkin and ACTG2 were identified as OxPt-R-related proteins due to a more than two-fold alteration in protein status. Gene ontology analysis suggested that TrkA, Nkx-2.5 and SOD1 were related to certain aggresomes produced in HCT116-OxPt-R cells. Moreover, ß-Lap exerted more cytotoxicity and morphological changes in HCT116-OxPt-R cells than in HCT116 cells through the downregulation of p53, Lys-acetylated proteins, TrkA, p38 MAPK, SOD1, caspase-2, CD44 and NPM. Our results indicate that ß-Lap could be used as an alternative drug to overcome the upregulated p53-containing OxPt-R caused by various OxPt-containing chemotherapies.


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Células HCT116 , Proteína Supressora de Tumor p53/metabolismo , Superóxido Dismutase-1/metabolismo , Neoplasias Colorretais/patologia , Caspase 2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Nucleofosmina , Receptores Proteína Tirosina Quinases/metabolismo , Apoptose , Linhagem Celular Tumoral , Receptores de Hialuronatos/metabolismo
9.
Toxicol Sci ; 193(2): 204-218, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37021957

RESUMO

Phthalates are endocrine-disrupting chemicals used in consumer products. Although phthalates are obesogens and affect metabolic function, it is unknown if chronic exposure for 6 months to a phthalate mixture alters adipose tissue phenotype in female mice. After vehicle or mixture exposure, white adipose tissue and brown adipose tissue (WAT and BAT) were analyzed for expression of adipogenesis, proliferation, angiogenesis, apoptosis, oxidative stress, inflammation, and collagen deposition markers. The mixture altered WAT morphology, leading to an increase in hyperplasia, blood vessel number, and expression of BAT markers (Adipoq and Fgf2) in WAT. The mixture increased the expression of the inflammatory markers, Il1ß, Ccl2, and Ccl5, in WAT. The mixture also increased expression of the proapoptotic (Bax and Bcl2) and antiapoptotic (Bcl2l10) factors in WAT. The mixture increased expression of the antioxidant Gpx1 in WAT. The mixture changed BAT morphology by increasing adipocyte diameter, whitening area, and blood vessel number and decreased expression of the thermogenic markers Ucp1, Pgargc1a, and Adrb3. Furthermore, the mixture increased the expression of adipogenic markers Plin1 and Cebpa, increased mast cell number, and increased Il1ß expression in BAT. The mixture also increased expression of the antioxidant markers Gpx and Nrf2 and the apoptotic marker Casp2 in BAT. Collectively, these data indicate that chronic exposure to a phthalate mixture alters WAT and BAT lipid metabolism phenotypes in female mice, leading to an apparent shift in their normal morphology. Following long-term exposure to a phthalate mixture, WAT presented BAT-like features and BAT presented WAT-like features.


Assuntos
Tecido Adiposo Marrom , Antioxidantes , Animais , Camundongos , Feminino , Tecido Adiposo Marrom/metabolismo , Antioxidantes/metabolismo , Tecido Adiposo , Tecido Adiposo Branco , Fenótipo , Camundongos Endogâmicos C57BL , Caspase 2/metabolismo
10.
Neurobiol Dis ; 182: 106126, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086756

RESUMO

Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.


Assuntos
Caspase 2 , Proteínas tau , Humanos , Masculino , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Caspase 2/metabolismo , Encéfalo/metabolismo , Imunoprecipitação da Cromatina , Ubiquitinação
11.
Biochem Biophys Res Commun ; 645: 147-153, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36689811

RESUMO

PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.


Assuntos
Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Transtornos do Neurodesenvolvimento , Humanos , Apoptose/genética , Caspase 2/genética , Caspase 2/metabolismo , Proteína Adaptadora de Sinalização CRADD/genética , Proteína Adaptadora de Sinalização CRADD/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Transtornos do Neurodesenvolvimento/genética
12.
BMB Rep ; 56(2): 166-171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593108

RESUMO

Monocytes are peripheral leukocytes that function in innate immunity. Excessive triglyceride (TG) accumulation causes monocyte death and thus can compromise innate immunity. However, the mechanisms by which TG mediates monocyte death remain unclear to date. Thus, this study aimed to elucidate the mechanisms by which TG induces monocyte death. Results showed that TG induced monocyte death by activating caspase-3/7 and promoting poly (ADP-ribose) polymerase (PARP) cleavage. In addition, TG induced DNA damage and activated the ataxia telangiectasia mutated (ATM)/checkpoint kinase 2 and ATM-and Rad3-related (ATR)/checkpoint kinase 1 pathways, leading to the cell death. Furthermore, TG-induced DNA damage and monocyte death were mediated by caspase-2 and -8, and caspase-8 acted as an upstream molecule of caspase-2. Taken together, these results suggest that TG-induced monocyte death is mediated via the caspase-8/caspase-2/DNA damage/executioner caspase/PARP pathways. [BMB Reports 2023; 56(3): 166-171].


Assuntos
Caspase 2 , Caspase 8 , Imunidade Inata , Monócitos , Triglicerídeos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Monócitos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Triglicerídeos/genética , Triglicerídeos/imunologia , Imunidade Inata/imunologia
13.
Transl Res ; 254: 34-40, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36343883

RESUMO

Targeting amyloid-ß plaques and tau tangles has failed to provide effective treatments for Alzheimer's disease and related dementias (ADRD). A more fruitful pathway to ADRD therapeutics may be the development of therapies that target common signaling pathways that disrupt synaptic connections and impede communication between neurons. In this review, we present our characterization of a signaling pathway common to several neurological diseases featuring dementia including Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and Huntington's disease. This signaling pathway features the cleavage of tau by caspase-2 (Casp2) yielding Δtau314 (Casp2/tau/Δtau314). Through a not yet fully delineated mechanism, Δtau314 catalyzes the mislocalization and accumulation of tau to dendritic spines leading to the internalization of AMPA receptors and the concomitant weakening of synaptic transmission. Here, we review the accumulated evidence supporting Casp2 as a druggable target and its importance in ADRD. Additionally, we provide a brief overview of our initial medicinal chemistry explorations aimed at the preparation of novel, brain penetrant Casp2 inhibitors. We anticipate that this review will spark broader interest in Casp2 as a target for restoring synaptic dysfunction in ADRD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Caspase 2/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo
14.
Cell Death Dis ; 13(11): 959, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379916

RESUMO

Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with ß-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Peptidomiméticos , Humanos , Caspase 2/metabolismo , Caspase 3/metabolismo , Neurônios/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo
15.
Cell Death Dis ; 13(9): 834, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171196

RESUMO

Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Caspase 2/genética , Humanos , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , RNA Longo não Codificante/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
16.
PLoS One ; 17(9): e0274784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129947

RESUMO

Caspase-2 is a member of the caspase family that exhibits both apoptotic and non-apoptotic properties, and has been shown to mediate synaptic deficits in models of several neurological conditions, including Alzheimer's disease (AD), Huntington's disease (HD), and Lewy Body dementia (LBD). Our lab previously reported that caspase-2 protein levels are elevated in these diseases, leading us to hypothesize that elevated caspase-2 protein levels are due to increased transcription of caspase-2 mRNA. There are two major isoforms of caspase-2 mRNA, caspase-2L and caspase-2S. We tested our hypothesis by measuring the levels of these mRNA isoforms normalized to levels of RPL13 mRNA, a reference gene that showed no disease-associated changes. Here, we report no increases in caspase-2L mRNA levels in any of the three diseases studied, AD (with mild cognitive impairment (MCI)), HD and LBD, disproving our hypothesis. Caspase-2S mRNA showed a non-significant downward trend in AD. We also analyzed expression levels of SNAP25 and ßIII-tubulin mRNA. SNAP25 mRNA was significantly lower in AD and there were downward trends in MCI, LBD, and HD. ßIII-tubulin mRNA expression remained unchanged between disease groups and controls. These findings indicate that factors besides transcriptional regulation cause increases in caspase-2 protein levels. The reduction of SNAP25 mRNA expression suggests that presynaptic dysfunction contributes to cognitive deficits in neurodegeneration.


Assuntos
Doença de Alzheimer , Caspase 2/genética , Disfunção Cognitiva , Cisteína Endopeptidases/genética , Doença de Huntington , Doença por Corpos de Lewy , Doença de Alzheimer/psicologia , Disfunção Cognitiva/etiologia , Humanos , Doença de Huntington/complicações , Doença de Huntington/genética , Doença por Corpos de Lewy/complicações , Proteínas de Neoplasias , Isoformas de RNA , RNA Mensageiro/genética , Proteínas Ribossômicas , Tubulina (Proteína)
17.
Biosci Biotechnol Biochem ; 86(11): 1506-1514, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36066914

RESUMO

Isofurans (IsoFs) are a series of novel discovered lipid peroxidation products. This study focused on the investigation of the angiogenic property of IsoF. MTT stain assay indicated that 1 µm IsoF had the most bioactivity in rat brain endothelial cells (RBECs). IsoF significantly promoted cellular proliferation and migration and remarkably decreased staurosporine-induced apoptosis by TUNEL assay in the RBECs. It successfully up-regulated rat aortic vascularization and choroid explant sprouting, extracellular regulated protein kinases (ERK)1/2, and triggered calcium release. RT-PCR examination indicated that IsoF up-regulated tumor necrosis factor (TNF)α, angiopoietin-1 receptor (Tie2), and vascular endothelial growth factor (VEGF)-A, but did not interfere with caspase 2 and VEGF-C in the RBECs. IsoF has pro-angiogenic activity. Calcium release and ERK1/2 phosphorylation may be involved in the signaling of the IsoF-induced up-regulation of TNFα, Tie2, and VEGF-A, which could be the molecular mechanism of the pro-angiogenic activity of the IsoF.


Assuntos
Angiopoietina-1 , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-1/genética , Fator C de Crescimento do Endotélio Vascular , Caspase 2 , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa , Cálcio/metabolismo , Estaurosporina , Neovascularização Fisiológica
18.
N Biotechnol ; 71: 37-46, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35926774

RESUMO

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover. To make the platform fusion protein process even more general such that any protein with an authentic N-terminus can be produced with high efficiency, the bacterial selection system PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection) was used to evolve cpCasp2 into a variant with a catalytic turnover two orders of magnitude higher and the ability to cleave before any amino acid. The high specificity and the stability of the original circularly permuted protease was fully retained in this mutant, while the high manufacturability was mostly retained, albeit with decreased soluble titer. Four point-mutations are responsible for this change in activity, two of which are located in or near the binding pocket of the active site. This variant was named CASPON enzyme and is a major component of the CASPase-based fusiON (CASPON) platform technology. Applicability for the production of recombinant proteins was demonstrated by enzymatic removal of the CASPON tag from five model proteins. The CASPON tag enables high soluble expressions, affinity purification and good accessibility for cleavage. The five industry-relevant proteins of interest were FGF2, TNF, GH, GCSF and PTH.


Assuntos
Aminoácidos , Caspase 2 , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes
19.
Cell Metab ; 34(10): 1548-1560.e6, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36041455

RESUMO

Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.


Assuntos
Caspase 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Caspase 2/metabolismo , Dieta , Frutose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo
20.
Arch Pharm (Weinheim) ; 355(9): e2200095, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35642311

RESUMO

Since the discovery of the caspase-2 (Casp2)-mediated ∆tau314 cleavage product and its associated impact on tauopathies such as Alzheimer's disease, the design of selective Casp2 inhibitors has become a focus in medicinal chemistry research. In the search for new lead structures with respect to Casp2 selectivity and drug-likeness, we have taken an approach by looking more closely at the specific sites of Casp2-mediated proteolysis. Using seven selected protein cleavage sequences, we synthesized a peptide series of 53 novel molecules and studied them using in vitro pharmacology, molecular modeling, and crystallography. Regarding Casp2 selectivity, AcITV(Dab)D-CHO (23) and AcITV(Dap)D-CHO (26) demonstrated the best selectivity (1-6-fold), although these trends were only moderate. However, some analogous tetrapeptides, most notably AcDKVD-CHO (45), showed significantly increased Casp3 selectivities (>100-fold). Tetra- and tripeptides display decreased or no Casp2 affinity, supporting the assumption that a motif of five amino acids is required for efficient Casp2 inhibition. Overall, the results provide a reasonable basis for the development of both selective Casp2 and Casp3 inhibitors.


Assuntos
Caspase 2 , Caspase 2/metabolismo , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Proteólise , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...